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Abstract. We calculate the optical functions of Pd using the ab initio, all-electron Full Potential Linear
Muffin Tin Orbital method within the framework of the Density Functional Theory in the Local Density
approximation. We test, in the case of Pd, the convergence of the dielectric function and energy loss
function in different energy ranges vs. the completeness of the basis and give a quantitative estimate of
the accuracy. The present approach opens the possibility of extending the energy range where the optical
functions can be calculated with good accuracy without increasing the computational effort.

PACS. 71.15.Mb Density functional theory, local density approximation, gradient and other corrections –
78.20.-e Optical properties of bulk materials and thin films – 78.66.Bz Metals and metallic alloys

1 Introduction

All-electron ab initio methods for the calculation of the
electronic properties of solids are based on the Density
Functional Theory (DFT) devised by Hohenberg, Kohn
and Sham [1]. This theory relies on the ground state elec-
tronic density for the construction of the total poten-
tial appearing in the Kohn-Sham (KS) equations. The
exchange-correlation part of the potential is usually cal-
culated within the Local Density Approximation (LDA),
yielding reliable ground state properties. This is demon-
strated by the successful determination of structural, equi-
librium and elastic properties of a very large number of el-
emental and compound crystals [2]. However, being DFT
a ground-state theory, the eigenvalues and eigenvectors
resulting from the solution of the Kohn-Sham equations
do not represent the physical energy spectrum and the
electronic states of the system. Corrections to this ap-
proach are, in principle, necessary when one tries to de-
scribe properties that involve excited states.

Nevertheless, it is a widespread practice to adopt
DFT-LDA to describe excited states, assuming that the
Kohn-Sham solutions are good approximations to the true
quasi-particles. In the case of semiconductors, the main
shortcoming of this approximation is an almost constant
underestimation of the gaps between filled and empty
states [3]. In the case of metals, it is expected to be much
better. With this cautions in mind it is possible to inter-
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pret, by ab initio DFT-LDA, experimental results involv-
ing also excited states, as, for instance, optical properties.

First principle electronic structure calculations in in-
termetallic systems allowed indeed to interpret the struc-
tures observed in the reflectivity spectrum of Yb ternaries
on the basis of the energy band scheme [4] and to calcu-
late the conductivity spectrum in PrSb [5] quite satisfac-
torily. In the following, we will assume that the linear op-
tical response of a transition metal can be well described
within DFT-LDA and we address, instead, the problem
of the accuracy needed in these calculations, taking the
optical properties of Pd as a test case. Our calculations
are performed with a code devised to be the Full Po-
tential (FP) version [6] of the Linear Muffin Tin Orbital
(LMTO) method [7]. This can be considered one of the
most powerful codes for ab initio electronic and optical
calculations. Its very flexible basis of muffin-tin orbitals
allows fast converging and accurate calculations of bulk
and surface ground state and optical properties [8]. We
will show below that the full-potential LMTO approach is
able to give a good account of optical properties in a wide
energy range (up to 70 eV), provided a well converged,
relatively extended, basis is used.

The theory of the optical response of solids to an elec-
tromagnetic perturbing field, developed in the random-
phase approximation [9], leads to the microscopic dielec-
tric function [10] εG,G′(q, ω). Here q and ω are the wave
vector and frequency of the electromagnetic field and
G, G′ are reciprocal-space vectors of the crystal. The
q→ 0 limit of εG,G′(q, ω) allows to write the macroscopic
dielectric function as a leading term in G, G’=0 plus a
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more complex term depending on G, G’ 6= 0 represent-
ing the so-called local field correction [11]. Restricting
oneself to the leading term of the macroscopic dielec-
tric function allows to write the optical linear response
as ε(ω) = ε00(0, ω), whose imaginary part, ε2(ω) may be
calculated from the matrix elements of the momentum op-
erator among unoccupied and occupied crystal electronic
states (Kohn-Sham eigenstates) [12]. The real part, ε1(ω),
is then obtained by the Kramers-Kronig relations that re-
quire the knowledge of ε2(ω) over a very large (in principle
infinite) frequency range. The point we make here is that
the reliability of the calculated ε2(ω) depends critically
on the completeness of the basis chosen to expand the
electron wave functions. To be more precise, the trunca-
tion of the basis determines, as a first consequence, the
energy range where the dielectric function may be con-
sidered accurate. This aspect has been discussed in detail
for the FP-LMTO calculation of the dielectric function in
non metallic systems like Si, Ge, GaAs under pressure [13]
and in graphite [14]. In the present paper we will focus on
the electron energy loss (EELS) function of Pd showing
that the completeness of the basis must be substantially
increased with respect to total energy calculations, to ob-
tain accurate results. Local field effects would increase
substantially the computational effort; on the other hand,
they have been shown to be very small in the case of cop-
per [15]. They are therefore neglected throughout in the
present calculations.

Pd is a transition metal with a potential applicative in-
terest. Measurement of the dielectric function [16,17], con-
ductivity, reflectivity [18] and electron energy loss [19,20]
are available. Theoretical calculations of optical spec-
tra have been performed some years ago by Uspenskii
and co-workers [21], with the LMTO method in the
atomic-sphere approximation, with poor agreement with
the experiments. Recently different approaches have been
used to improve the calculations of the optical func-
tions [22,23]. The former approach [22] consists in an all-
electron method within DFT-LDA, that includes a very
large number ('500) of unoccupied Kohn-Sham levels for
the evaluation of the density response. The resulting EELS
spectrum of Pd calculated with this method is compared
with that of Uspenskii and with that measured by Daniels
et al. [20], finding a better agreement with experiments
than Uspenskii [21], especially at low energies. Still some
discrepancies remain. The latter approach [23], developed
in the kp formalism, allows the calculation of the full op-
tical matrix of Pt and Pd. The energy range is extended
up to 100 eV and a substantial reduction of the absorption
intensity in the far UV region is found.

We will show below that our calculated EELS spec-
trum, although neglecting local filed effects, agrees quite
well with the experiments over an energy range midway
between that of references [22,23]. Besides, it does not
present, even for the smallest basis set, the “pathology”
at low energy found in the spectrum by Uspenskii [21] and
improves also with respect to Fehrenbach’s results.

We briefly recall in Section 2 some features of the FP-
LMTO method, relevant to the present discussion. More

details are to find in references [6,7]. The results of our
calculations are discussed in Section 3 and compared with
experiments in Section 4. The conclusions are drawn in
Section 5.

2 Method of calculation

The FP-LMTO code is based on a variational method
where the space is divided, as in the cellular method, in
non overlapping so-called muffin-tin (MT) spheres and in
the interstitial region, surrounding the spheres. The Kohn-
Sham equations have different solutions within the spheres
and in the interstitial region. These solutions are then
matched at the sphere boundary, i.e. at the MT radius S,
in a continuous and differentiable way, forming the muffin
tin orbital (MTO) φt(r−τ) centered on the atom sitting at
the sphere center τ . Subscript t includes all the quantum
numbers characterizing an atomic-like state: n, l,m, i.e.,
principal, orbital and magnetic quantum number, plus the
tail parameter κ2 described below. The MTO’s are the
basis functions, atomic-like inside the MT spheres. Out-
side, they are given by linear combinations of Hankel or
Neuman functions. The latter ones, also called tails or en-
velope functions, have kinetic energy κ2 (negative or pos-
itive). The trial wave-function is then expressed as a lin-
ear combination of Bloch sums of muffin-tin orbitals: the
number of MTO’s to be included in the trial function de-
pends, of course, on t, i.e., on n, l,m and on the number of
tails κ2. Core and valence states (here valence states indi-
cate all non-core atomic states, including empty ones) are
treated separately in so far the former ones are obtained
as exact solution of the Dirac equation with the spherical
part of the muffin tin potential. Core charge components
may, however, spill out of the parent MT spheres. This
contribution (“core leakage”) is added to the other valence
MT and interstitial charge in the construction of the po-
tential at each step of the self-consistency cycle. In this
scheme the truncation of the basis set consists in limiting
the number of states included in the trial function. The
minimum set nlm of valence basis functions must include
the atomic-like states that describe the chemical valence.
At least one single tail is then attached to each set of nlm.
However, in most calculations, especially in those dealing
with optical properties, one must increase this minimum
set substantially. This is done by increasing the set of nlm
states, e.g. by promoting the highest lying core levels into
the valence set (semi-core states) and/or adding higher
empty valence states. Moreover, more tails for each one of
these sets may be used to increase the variational freedom
of the basis (multiple κ basis set).

In the present case we include all states in a single fully
hybridizing basis, consisting of different sets of nlm with
multiple κ2 to test the convergence of the optical functions
with respect to the completeness of the MTO basis. Opti-
cal transitions from core states are not considered in our
calculation of the dielectric function: this means that the
inclusion of semi-core states into the valence set increases
the number of possible optical transitions. We remind that
our calculations do not include local field effects.
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3 Results

The atomic configuration of Pd is [Kr]4d105s0 and the
f.c.c. lattice constant is taken a = 7.353 a.u. We per-
form self-consistent calculations for two groups of MTO’s
without and with the semicore states (4s2, 4p6), re-
spectively. The following sets of quantum numbers de-
scribe the valence MTO’s for five different basis sets:
1) 2 × (4d, 5s, 5p, 5d), 2) 2 × (4d, 5s, 5p, 5d, 4f), 3) 2 ×
(4s, 4p, 4d, 5s, 5p), 4) 2× (4s, 4p, 4d, 5s, 5p, 5d, 4f), 5) 2×
(4s, 4p, 4d, 5s, 5p, 5d, 6s, 6p, 6d, 4f). They correspond to
bases of 28, 42, 26, 50, 68 MTO’s, respectively. Sets 1
and 2 have the [Kr] configuration in the core whereas sets
3-5 treat also the semi-core states (4s, 4p) as valence state.
The factor 2 in front of each bracket means that a twofold
of different tails κ2 is taken for each set with the same nlm.
We list in Table 1, for each basis set, the quantum num-
bers n and l and the values of k2. The numerical accuracy
for integrations in the reciprocal space is achieved by us-
ing a regular mesh of 47 k-points in the irreducible wedge
of the Brillouin Zone (BZ) with a Gaussian smearing of
2 mRy for the convergence of the potential. 724 k-points
in the irreducible wedge of the BZ with the Tetrahedron
Method [24] are used to calculate the dielectric function.
This turned out to be a good recipe also for bulk Cu and
Ag. A preliminary test of convergence is that of the to-
tal energy with respect to the muffin-tin radius S. This is
a variational parameter that affects the convergence only
through the dependence of the MTO’s on S (matching at
the MT sphere boundary). The optimum choice of S min-
imizes the total energy. However, its value becomes imma-
terial for a well converged basis set. In the present case we
make the further step of requiring also the convergence of
the dielectric function with S, since the eigenfunctions de-
pend on S and affect the optical matrix elements strongly.
For metals, the dielectric function contains an intraband
(D, stays for Drude) and an interband (i) contribution:

ε(ω) =
(
εD1 + εi1

)
+ i
(
εD2 + εi2

)
(1)

where the subscripts 1, 2 in the above equation denote the
real and imaginary parts of the dielectric function ε(ω).
The interband term εi2 is computed ab initio and is the
one whose convergence we want to test. The real part εi1
is obtained by Kramers-Kronig transform from εi2 with a
broadening of 0.01 eV. The Drude terms are calculated
by the well-known relations [16] εD1 = 1 − ω2

pτ
2

1+ω2τ2 and

εD2 =
ω2
pτ

ω(1+ω2τ2) , with ~ωp = 3 eV and a relaxion time
τ
~ = 8.5 eV−1 deduced from measurements [17].

We focus on sets 1) and 2), without semi-core states,
and perform calculations for two different values of the MT
radii S1, S2 such that the ratio 2S/d = 96%, 98%, respec-
tively, where d is half the first nearest neighbour distance.
We first notice that, within each basis set 1) and 2) the
total energy, obtained with S1 and S2, coincides within 1
mRy. However, set 2) gives a total energy lower by roughly
one hundredth of a Ry compared to set 1). Thus, as far
as the total energy is concerned, either MT radius satis-
fies the convergence criterium for either basis set 1 and 2.

Table 1. Quantum numbers n, l and k2 value (in Ry) for the
basis sets 1-5 described in the text.

Basis set n l k2

1 4 2 �0:2;+0:5

5 0 �0:2;+0:5

5 1 �0:2;+0:5

5 2 �0:8;+0:2

2 4 2 �0:2;+0:5

5 0 �0:2;+0:5

5 1 �0:2;+0:5

5 2 �0:8;+0:2

5 3 �0:2;+0:5

3 4 0 �5:5;�2:5

4 1 �1:5;�0:5

4 2 �0:5;+0:2

5 0 +0:2;+0:5

5 1 +0:2;+0:5

4 4 0 �5:5;�2:5

4 1 �1:5;�0:5

4 2 �0:5;+0:2

4 3 +0:2;+0:5

5 0 +0:2;+0:5

5 1 +0:2;+0:5

5 2 +0:2;+0:5

5 4 0 �5:5;�2:5

4 1 �2:5;�1:5

4 2 �0:5;+0:2

4 3 +1:5;+4:5

5 0 �0:5;+0:2

5 1 �0:5;+0:2

5 2 +0:2;+1:5

6 0 +1:5;+4:5

6 1 +1:5;+4:5

6 2 +1:5;+4:5

We have then calculated εi2 for each of the two basis sets
with S1 and S2. The plot in Figure 1 indicates that only
for the basis set 2, the choice of the MT radius is practi-
cally immaterial also at the highest energies where basis
truncation effects become more important. We henceforth
fix S=S2 in all further calculations. For the discussion of
the convergence of the dielectric function with respect to
the completeness of the basis we plot in Figures 2a and b
ε2 and ε1, respectively, for the five basis sets of MTO’s
given above. The first thing to notice is that the curves
for the five basis sets split into two groups according to
whether they contain the 4f states or not. The inclusion
of the f states in the basis set introduces sizeable differ-
ences in the narrow interval 0–2 eV, in ε1 and ε2 and also
over the rest of the spectrum beyond about 5 and 10 eV.
The convergence of the sets 2, 4, 5, with the 4f states, is
quite good over the whole range except at the very end of
the spectrum as can be clearly seen in the insets of Fig-
ures 2a, b. From about 35 eV in ε2 and 32 eV in ε1 (see the
insets of Figures 2a and b, respectively), the slope of the
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Fig. 1. Imaginary part of the interband dielectric function εi2 calculated for the basis sets 1 and 2 for two different values of
the muffin-tin radius S1 and S2. Set 1: S1 continuous, S2 dashed; Set 2: S1 short-dashed, S2 dotted. The plot in the inset has
the same symbols.

curves relative to set 2) vs. sets 4), 5) changes. We ascribe
this difference to the simultaneous presence of semi-core
states and f states in the sets 4) and 5), which makes
transitions at higher energies possible. From the inset of
Figure 2a we see that ε2 is vanishing for the less complete
sets and not for the most complete ones at the highest
energies. This indicates that electronic states available to
optical transitions are possibly present beyond 40 eV. We
shall consider this point carefully in the next section when
comparing with the experimental results. Now, as far as
the completeness of the basis is concerned, we conclude
that the dielectric function is converged up to 30 eV if the
basis contain 4f valence states and up 40 eV when also
semi-core 4s, 4p states are furher included. The results ob-
tained with sets 4) and 5) are very similar to each other
everywhere; this means that including 6s, 6p and 6d states
in the basis is not crucial. We observe, in passing, that in-
spection of the wavefunctions show that sets 3), 4) and
5) with semi-core states give a negligeable “core leakage”
with respect to the sets 1) and 2), in better agreement
with the ideal representation of core states.

We now want to see how the differences in ε(ω) affect
the EELS spectrum. The energy loss function, without
local fields, is given by:

−Im(ε−1) =
ε2

ε21 + ε22
· (2)

We plot in Figure 3 −Im(ε−1) for the five sets of MTO’s
above. Also in this case, as in Figure 2, there is a split
of the curves relative to the MTO’s with and without 4f
states. We can, in this case, clearly distinguish three differ-
ent regimes. At low energy (<7 eV) all the basis sets give
the same result. Hencefort up to about 34 eV the three sets

with the f states are almost indistinguishable. After this
energy sets 4) and 5) split from 1), 2), 3). In particular,
the unphysical high peak at 36 eV for set 2) is strongly
smoothed out in sets 4) and 5). We notice that sets in-
cluding semi-core states (3, 4, 5) have a positive slope at
the very end of the spectrum. At the light of these results
we conclude that all sets give a converged EELS spectrum
below 7 eV, 4f electrons must be included to increase the
convergence up to 34 eV and semi-core 4s, 4p states are
needed to push the convergence up to 40 eV.

Basis sets 1) and 3), which include 23 or less empty
states, yield discrepancies with respect to the more com-
plete basis sets of the order of 50% around 20 eV. This
is in agreement with a similar error found by Fehrenbach
when employing about 30 empty states [22]. He finds that
about 500 empty bands are needed to get 1% accuracy
in the response function. In the present work '60 empty
bands are enough to get an accuracy of about 10%. We
think that, in view of the neglection of many-body effects
in the calculations (self-energy and electron-hole interac-
tion effects in both, also local field effects in ours), a better
accuracy is not worth.

4 Comparison with experiments

Several optical functions of the transitions and noble met-
als, among which Pd, have been measured in an energy
range between 0 and 30 eV [16–18] whereas the electron
energy loss has been measured up to 70 eV by Daniels
et al. [19,20]. We notice that the comparison of the mea-
sured dielectric function [16] with that obtained by our
calculations (see Fig. 2) up to 40 eV is very satisfactory.
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(b)

Fig. 2. Imaginary (a) and real (b) part of the dielectric function calculated for the five different basis sets described in the text:
set 1) continuous, set 2) dashed, set 3) short-dashed, set 4) dotted, set 5) dot-dashed line.

We are, however, interested in comparing the EELS, equa-
tion (2), with that measured up to 70 eV. For this reason
we have tried to extend the calculation of ε2 to higher
energies to increase the accuracy of the Kramers-Kronig
transform and to allow a comparison over the whole exper-
imental range. This has been obtained in two steps. First
we have extended the ab initio calculation of εi2 up to

70 eV. Then we have increased the range of the dielectric
function up to 1000 eV by merging the calculated ε2(ω)
with a smooth, monotonic curve obtained, as common
practice, using the optical parameters of Henke et al. [25].
The two curves must be matched at an energy value after
which the features in the calculated ε2 may be neglected.
In Figure 4 we have plotted εi2 from the raw calculation
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Fig. 3. Spectrum of the loss function calculated from the dielectric functions plotted in Figure 2 with the same symbols.
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Fig. 4. Imaginary part of the interband dielectric function of Pd obtained without (continuous), with (dotted) a broadening of
0.5 eV, and with a semi-empirical prolongement and a broadening of 0.5 eV (dashed). In the inset are plotted the d (continuous)
and f (dotted) partial densities of states.

(continuous), with a broadening of 0.5 eV (dashed) and
with the “queue” attached at 55.4 eV (dotted) since op-
tical transitions still occur at 50 eV. By inspection of the
partial d and f density of states (DOS) in the inset of
Figure 4 we see that the high energy peaks are ascribable
to transitions from occupied d states, just below zero (the
Fermi level), to f empty states, whose density of states
peaks around 50 eV (s and p components are completely
negligible here). After this energy, due to the gradual van-

ishing of the density of states and matrix elements, optical
transitions become much less intense.

The curve of the energy loss function calculated with
the extended dielectric function is plotted in Figure 5
along with two different experimental spectra [19,20] and
results of previous calculations. We report in panel (a)
the experimental data of reference [20], where the trans-
mitted electrons are scattered by a small, though non van-
ishing, angle < 1 mrad. We estimate that in this case the
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Fig. 5. Loss function of Pd: a) experiment of reference [20] carried out at non zero scattering angle; b) experiment of refer-
ence [19] carried out at vanishing scattering angle; c) present calculation; d) calculation from reference [22]; e) calculation from
reference [21].

momentum transfer is not negligible, of the order of half
the Brillouin Zone boundary, i.e. too large for the dipole
approximation to be valid as assumed throughout in our
calculations. Therefore, the comparison between theory
and the plot in panel (a) can be only qualitative, at least
at low energy, where the scattering angle affects the inten-
sity [19]. In panel (b) we plot the curve from reference [19]
obtained at zero scattering angle, thus fulfilling our zero
momentum assumption, but in a shorter energy range up
to 30 eV. In fact the agreement of our results, plotted
in panel (c), is rather good: the positions of peaks and
dips are practically coincident among theory and measure-
ments. At energies beyond those of panel (b), the agree-
ment with the curve in panel (a) can be still considered
reasonable between 35–50 eV. In fact the slope is mono-
tonically decreasing in both curves, and after 50 eV where
the experimental curve shows a weak but sizeable upturn
reminiscent of the peak in the theoretical curve. The fact

that experimental structures become weaker than the cal-
culated ones at higher energies can be easily explained
in terms of increasing life-time broadening of the relevant
excitations.

In Figure 5 we also report the energy loss spectra of
Pd, as calculated by Fehrenbach [22] (panel (d)), and by
Uspenskii [21] (panel (e)). We notice that these previ-
ous theoretical results were obtained for a smaller energy
range than in our present calculations. The agreement of
these two theoretical curves with the experimental one in
panel (b) is worse than in our case (see the high peak
at '7 eV in the calculation of Uspenskii and the struc-
ture around 12 eV in the calculation of Fehrenbach). In
particular, we think that the “pathologically” high peak
found by Uspenskii, is due to an insufficient sampling of
the Brillouin Zone in the numerical integrations rather



166 The European Physical Journal B

than to an intrinsic deficiency of the LMTO-ASA method,
as speculated by Fehrenbach [22].

5 Conclusions

We found that the FP-LMTO method is appropriate to
calculate optical functions of transition metals and tested
this method against the range of energy where the en-
ergy loss function of Pd may be calculated to be in good
agreement with experiments. The quantitative accuracy
of the calculations is completely controlled by the com-
pleteness of the MTO’s basis functions and by the energy
interval in which the interband dielectric function is cal-
culated. Since the increase of the basis set is computa-
tionally very easy to achieve and the energy range may be
extended to a value comparable to that of experiments,
the FP-LMTO turns out to be very appropriate to deter-
mine ab initio optical properties in so far DFT-LDA is
applicable. The number of empty bands included in the
calculations needed to obtain converged results depends
on the energy range of interest. This is rather obvious,
since including more empty bands results in considering
more high energy transitions. We found that a reasonable
convergence in the loss function up to 70 eV is achieved us-
ing about 60 empty bands. The quantitative agreement of
our results with experiments supports these conclusions.
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